Respuesta :

We have the expression

[tex]\frac{\csc (\theta)\cdot\cot (\theta)}{\sec (\theta)}[/tex]

In order to simplify it, we have to look at some trigonometric identities:

[tex]\begin{gathered} csc(\theta)=\frac{1}{\sin (\theta)} \\ \cot (\theta)=\frac{1}{\tan(\theta)}=\frac{\cos (\theta)}{\sin (\theta)} \\ \sec (\theta)=\frac{1}{cos(\theta)} \end{gathered}[/tex]

Then, we can write:

[tex]\frac{1}{\sin(\theta)}\cdot\frac{\cos(\theta)}{\sin(\theta)}\cdot\cos (\theta)=\frac{\cos(\theta)^2}{\sin(\theta)^2}=\cot ^2(\theta)[/tex]

The simplified expression is cot^2(theta)

[tex]\cot ^2(\theta)[/tex]

RELAXING NOICE
Relax