Given the numbers:
{1,2,3,4,5}
If two numbers are randomly selected without replacement, let's find the following:
a) Both are even
Number of even numbers in {1,2,3,4,5} = 2 and 4 = two even numbers.
Probability that even numbers are picked without replacement is:
[tex]P(\text{even)}=\frac{2}{5}\times\frac{1}{4}=\frac{2}{20}\text{ = }\frac{1}{10}[/tex][tex]P(\text{even)}=\frac{1}{10}[/tex]b) Both are prime:
Number of prime numbers in {1,2,3,4,5} = 1, 3 and 5 = three prime numbers
Probability that the random umbers picked are prime numbers is:
[tex]\begin{gathered} P(both\text{ prime)=}\frac{3}{5}\times\frac{2}{4}=\frac{6}{20}=\frac{3}{10} \\ \\ P(\text{both prime)=}\frac{3}{10} \end{gathered}[/tex]c) The sum of the numbers is odd.
we have the following:
1 + 2
1 + 4
2 + 3
2 + 5
3 + 4
4 + 5
Here, we have 6 possible sets where the sum of the numbers is odd.
Total number of sets using =
[tex]^5C_2=\frac{5!}{2!(5-2)!}=\frac{5!}{2!(3)!}=10[/tex]Thus, we have:
[tex]\begin{gathered} P\text{ = }\frac{6}{10}=\frac{3}{5} \\ \\ P\text{ = }\frac{3}{5} \end{gathered}[/tex]d) The product of the numbers is odd:
1 x 3
1 x 5
3 x 5
[tex]P=\frac{3}{10}[/tex]ANSWER:
[tex]a)\text{ P(both are even) = }\frac{1}{10}[/tex][tex]b)\text{ P(both are prime) = }\frac{3}{10}[/tex][tex]c)\text{ P(odd sum) = }\frac{3}{5}[/tex][tex]d)\text{ P(odd product)=}\frac{3}{10}[/tex]