1) To find the inverse function of a linear one, we must follow some steps:
2) Take the given function, and swap the variables so
[tex]y=3x-5[/tex]It's going to become in the process:
[tex]x=3y-5[/tex]3) And rewrite it putting y on the left side:
[tex]\begin{gathered} -3y=-x-5 \\ 3y=x+5 \\ \frac{3y}{3}=\frac{x}{3}+\frac{5}{3} \\ y=\frac{x}{3}+\frac{5}{3}\text{ or} \\ f^{-1}(x)=\frac{x}{3}+\frac{5}{3}\text{ } \end{gathered}[/tex]So that's our inverse function whose Range is the Domain of the original one and the Domain is the Range of the original one.