Answer:
force = 2.73 x 10^ -15 N
angle = 153.435
Explanation:
Let us redraw the diagram
Let us call
F13 = force on m1 due to m3
F12 = force on m1 due to m2
Now along the x-axis, we have
[tex]F_x=F_{13}\sin \theta\; \hat{i}[/tex]
and along the y-axis, we have
[tex]F_y=F_{13}\cos \theta+F_{12}\; \hat{j}[/tex]
Now,
[tex]F_{13}=G\frac{m_1m_3}{d^2+(2d)^2}[/tex]
and
[tex]F_{12}=G\frac{m_1m_2}{d^2}[/tex]
Therefore, the force along the x-axis becomes
[tex]\begin{gathered} F_x=F_{13}\sin \theta\; \hat{i} \\ \Rightarrow F_x=G\frac{m_1m_3}{d^2+(2d)^2}\sin \theta\; \hat{i} \end{gathered}[/tex]
and the force along the y-axis becomes
[tex]\begin{gathered} F_y=F_{13}\cos \theta+F_{12}\; \hat{j} \\ \Rightarrow F_y=G\frac{m_1m_3}{d^2+(2d)^2}\cos \theta+G\frac{m_1m_2}{d^2}\hat{\; j} \end{gathered}[/tex]
Since
[tex]\sin \theta=\frac{2d}{\sqrt[]{d^2+(2d)^2}}=\frac{2d}{d\sqrt[]{5}}=\frac{2}{\sqrt[]{5}}[/tex]
and
[tex]\cos \theta=\frac{d}{\sqrt[]{d^2+(2d)^2}}=\frac{d}{d\sqrt[]{5}}=\frac{1}{\sqrt[]{5}}[/tex]
The above equations become
[tex]F_x=G\frac{m_1m_3}{d^2+(2d)^2}\times\frac{2}{\sqrt[]{5}}\; \hat{i}[/tex][tex]\Rightarrow\boxed{F_x=G\frac{m_1m_3}{5d^2}\times\frac{2}{\sqrt[]{5}}\; \hat{i}}[/tex]
and
[tex]\boxed{F_y=G\frac{m_1m_3}{5d^2}\times\frac{1}{\sqrt[]{5}}+G\frac{m_1m_2}{d^2}\hat{j}}[/tex]
To find the numerical value, we now put
G = 6.67 x 10^-11
m_1 = m_2 = m_3 = 2.2 x 10^-4 kg
d = 0.036 m
into the above equations and get
[tex]F_x=(6.67\times10^{-11})\frac{(2.2\times10^{-4})^2}{5(0.036)^2}\times\frac{2}{\sqrt[]{5}}\; \hat{i}[/tex][tex]\boxed{F_x=4.46\times20^{-16}\; \; \hat{i}}[/tex]
and
[tex]F_y=(6.67\times10^{-11})\frac{(2.2\times10^{-4})^2}{5(0.036)^2}\times\frac{1}{\sqrt[]{5}}+(6.67\times10^{-11})\frac{(2.2\times10^{-4})^2}{(0.036)^2}\hat{j}[/tex][tex]\Rightarrow\boxed{F_y=2.7\times10^{-15}\; \hat{j}}[/tex]
Therefore, the net gravitational force is
[tex]F_{\text{tot}}=4.46\times20^{-16}\; \; \hat{i}+2.7\times10^{-15}\; \hat{j}[/tex]
the magnitude of this net force is
[tex]|F_{\text{tot}}|=\sqrt[]{(4.46\times20^{-16})^2+(2.7\times10^{-15})^2}[/tex][tex]\boxed{|F_{\text{tot}}|=2.73\times10^{-15}}[/tex]
Finally, we need to find the direction of this force.
To specify, the direction, we need to find the angle this force makes counterclockwise with respect the x-axis.
The angle is given by
[tex]\cos \theta=\frac{1}{\sqrt[]{5}}[/tex][tex]\Rightarrow\theta=63.435^o[/tex]
adding additional 90 degrees gives the angle with respect to the positive x-axis.
[tex]\theta+90^o=153.435^o[/tex]
Hence, the force is directed at about 153 degrees counterclockwise with respect to the x-axis.