You are sitting at your dinner table and notice three peas have fallen off of your plate as shown. Each pea has a mass of 0.22g and d=3.6cm. A. Find the magnitude and direction (CCW from the +axis) of the net gravitational force on the pea labeled M1 B. Find the direction (CCW from the +axis) of the net gravitational force on the pea labeled m1

You are sitting at your dinner table and notice three peas have fallen off of your plate as shown Each pea has a mass of 022g and d36cm A Find the magnitude and class=

Respuesta :

Answer:

force = 2.73 x 10^ -15 N

angle = 153.435

Explanation:

Let us redraw the diagram

Let us call

F13 = force on m1 due to m3

F12 = force on m1 due to m2

Now along the x-axis, we have

[tex]F_x=F_{13}\sin \theta\; \hat{i}[/tex]

and along the y-axis, we have

[tex]F_y=F_{13}\cos \theta+F_{12}\; \hat{j}[/tex]

Now,

[tex]F_{13}=G\frac{m_1m_3}{d^2+(2d)^2}[/tex]

and

[tex]F_{12}=G\frac{m_1m_2}{d^2}[/tex]

Therefore, the force along the x-axis becomes

[tex]\begin{gathered} F_x=F_{13}\sin \theta\; \hat{i} \\ \Rightarrow F_x=G\frac{m_1m_3}{d^2+(2d)^2}\sin \theta\; \hat{i} \end{gathered}[/tex]

and the force along the y-axis becomes

[tex]\begin{gathered} F_y=F_{13}\cos \theta+F_{12}\; \hat{j} \\ \Rightarrow F_y=G\frac{m_1m_3}{d^2+(2d)^2}\cos \theta+G\frac{m_1m_2}{d^2}\hat{\; j} \end{gathered}[/tex]

Since

[tex]\sin \theta=\frac{2d}{\sqrt[]{d^2+(2d)^2}}=\frac{2d}{d\sqrt[]{5}}=\frac{2}{\sqrt[]{5}}[/tex]

and

[tex]\cos \theta=\frac{d}{\sqrt[]{d^2+(2d)^2}}=\frac{d}{d\sqrt[]{5}}=\frac{1}{\sqrt[]{5}}[/tex]

The above equations become

[tex]F_x=G\frac{m_1m_3}{d^2+(2d)^2}\times\frac{2}{\sqrt[]{5}}\; \hat{i}[/tex][tex]\Rightarrow\boxed{F_x=G\frac{m_1m_3}{5d^2}\times\frac{2}{\sqrt[]{5}}\; \hat{i}}[/tex]

and

[tex]\boxed{F_y=G\frac{m_1m_3}{5d^2}\times\frac{1}{\sqrt[]{5}}+G\frac{m_1m_2}{d^2}\hat{j}}[/tex]

To find the numerical value, we now put

G = 6.67 x 10^-11

m_1 = m_2 = m_3 = 2.2 x 10^-4 kg

d = 0.036 m

into the above equations and get

[tex]F_x=(6.67\times10^{-11})\frac{(2.2\times10^{-4})^2}{5(0.036)^2}\times\frac{2}{\sqrt[]{5}}\; \hat{i}[/tex][tex]\boxed{F_x=4.46\times20^{-16}\; \; \hat{i}}[/tex]

and

[tex]F_y=(6.67\times10^{-11})\frac{(2.2\times10^{-4})^2}{5(0.036)^2}\times\frac{1}{\sqrt[]{5}}+(6.67\times10^{-11})\frac{(2.2\times10^{-4})^2}{(0.036)^2}\hat{j}[/tex][tex]\Rightarrow\boxed{F_y=2.7\times10^{-15}\; \hat{j}}[/tex]

Therefore, the net gravitational force is

[tex]F_{\text{tot}}=4.46\times20^{-16}\; \; \hat{i}+2.7\times10^{-15}\; \hat{j}[/tex]

the magnitude of this net force is

[tex]|F_{\text{tot}}|=\sqrt[]{(4.46\times20^{-16})^2+(2.7\times10^{-15})^2}[/tex][tex]\boxed{|F_{\text{tot}}|=2.73\times10^{-15}}[/tex]

Finally, we need to find the direction of this force.

To specify, the direction, we need to find the angle this force makes counterclockwise with respect the x-axis.

The angle is given by

[tex]\cos \theta=\frac{1}{\sqrt[]{5}}[/tex][tex]\Rightarrow\theta=63.435^o[/tex]

adding additional 90 degrees gives the angle with respect to the positive x-axis.

[tex]\theta+90^o=153.435^o[/tex]

Hence, the force is directed at about 153 degrees counterclockwise with respect to the x-axis.

Ver imagen HughstonX45817
RELAXING NOICE
Relax