Answer:
The sides are;
[tex]\begin{gathered} l=a-12 \\ b=a+11 \end{gathered}[/tex]The perimeter is;
[tex]P=4a-2[/tex]Explanation:
The area of the rectangle is given as;
[tex]A=a^2-a-132[/tex]recall that area of a rectangle is length multiplied by breadth;
[tex]A=l\times b[/tex]let us factorise the given equation;
[tex]\begin{gathered} A=a^2-a-132 \\ A=a^2-12a+11a-132 \\ A=a(a-12)+11(a-12) \\ A=(a-12)(a+11) \end{gathered}[/tex]Comparing the factorised equation to the formula for area;
[tex]\begin{gathered} A=l\times b=(a-12)(a+11) \\ l=a-12 \\ b=a+11 \end{gathered}[/tex]The perimeter is given as;
[tex]P=2(l+b)[/tex]substituting the values of l and b;
[tex]\begin{gathered} P=2(a-12+a+11) \\ P=2(2a-1) \\ P=4a-2 \end{gathered}[/tex]Therefore; the sides are;
[tex]\begin{gathered} l=a-12 \\ b=a+11 \end{gathered}[/tex]The perimeter is;
[tex]P=4a-2[/tex]