Respuesta :

We have the following expression

[tex]4\cdot\text{cis(}\frac{\pi}{4})\cdot5\text{cis(}\frac{\pi}{6})[/tex]

This is equivalent to

[tex]4\cdot\text{cis(}\frac{\pi}{4})\cdot5\text{cis(}\frac{\pi}{6})=(4\times5)cis(\frac{\pi}{4}+\frac{\pi}{6})[/tex]

Since

[tex]\frac{\pi}{4}+\frac{\pi}{6}=\frac{6\pi+4\pi}{24}=\frac{10}{24}\pi=\frac{5}{12}\pi[/tex]

we have that

[tex]4\cdot\text{cis(}\frac{\pi}{4})\cdot5\text{cis(}\frac{\pi}{6})=20cis(\frac{5\pi}{12})[/tex]

Therefore, the answer is the second option from top to bottom.

RELAXING NOICE
Relax