What is their profit equation? Type it as p= (show your work)

1)
To find out the profit we must subtract the expense from the income. We have both functions, we know that the expense is
[tex]20x+500[/tex]And the income
[tex]-x^2+100x[/tex]The profit will be (income - expense), therefore:
[tex]\begin{gathered} p=-x^2+100x-(20x+500)^{} \\ \\ p=-x^2+100x-20x-500 \\ \\ p=-x^2+80x-500 \end{gathered}[/tex]The profit is given by
[tex]p=-x^2+80x-500[/tex]2)
Now we must discover the ticket price they would break even, the break-even point happens when the income and the expense are the same, then (expense = income)
[tex]\begin{gathered} -x^2+100x=20x+500 \\ \\ -x^2+80x-500=0 \end{gathered}[/tex]See that, it's the same as the profit, we knew that the profit was
[tex]p=-x^2+80x-500[/tex]The break-even happens when p = 0.
Now we must solve that quadratic function
[tex]-x^2+80x-500=0[/tex]Using the quadratic formula
[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]Where a = -1, b = 80, c = -500.
[tex]\begin{gathered} x=\frac{-80\pm\sqrt[]{80^2-4\cdot(-1)\cdot(-500)}}{2\cdot(-1)} \\ \\ x=\frac{-80\pm\sqrt[]{4400}}{-2} \end{gathered}[/tex]If we simplify the expression
[tex]\begin{gathered} x=\frac{-80\pm20\, \, \sqrt[]{11}}{-2} \\ \\ x=40\pm10\, \, \sqrt[]{11} \end{gathered}[/tex]Therefore they would break-even at
[tex]x=6.834\text{ and }x=73.166[/tex]3)
The max profit will be the vertex of the profit function (parabola), the vertex of a parabola is
[tex]V=\mleft(-\frac{b}{2a},-\frac{\Delta}{4a}\mright)[/tex]Here, the values of "x" is the ticket price and the "y" values are the profit.
Using the x coordinate to find out the vertex ticket price we have:
[tex]x=-\frac{b}{2a}[/tex]Remember that a = -1, b = 80, c = -500, therefore
[tex]\begin{gathered} x=-\frac{80}{2\cdot(-1)} \\ \\ x=\frac{80}{2}=40 \end{gathered}[/tex]They reach the maximum profit when the ticket price is $40
4)
To find out the maximum profit we can use x = 40 in the profit formula
[tex]p=-x^2+80x-500[/tex]Put x = 40
[tex]\begin{gathered} p=-(40)^2+80\cdot(40)-500 \\ \\ p=-1600+3200-500 \\ \\ p=3200-2100 \\ \\ p=1100 \end{gathered}[/tex]The maximum profit is $1100
5)
If we want a determined profit and find the ticket price, we must take the profit function:
[tex]p=-x^2+80x-500[/tex]And solve that function for "x", which is the same to discover the ticket price for a generic profit.
So, we will solve the quadratic for a generic value of p:
[tex]-x^2+80x-500-p=0[/tex]Now, we have a = -1, b = 80, c = -500 - p.
Using again the quadratic formula, we can solve it for x
[tex]\begin{gathered} x=\frac{-80\pm\sqrt[]{80^2-4\cdot(-1)\cdot(-500-p)}}{2\cdot(-1)} \\ \\ x=\frac{-80\pm\sqrt[]{4400-4p}}{-2} \\ \\ x=\frac{-80\pm2\, \sqrt[]{1100-p}}{-2} \\ \\ x=40\pm\, \sqrt[]{1100-p} \end{gathered}[/tex]Therefore, given a profit value, the ticket price will be
[tex]x=40+\sqrt[]{1100-p}\text{ or }x=40-\sqrt[]{1100-p}[/tex]Examples:
Let's suppose that the profit is $600, we just have to put p = 600 and simplify the expression, some of them may be hard to find by hand so use a calculator. The "strange" part here is: there are two values that the ticket can be
[tex]x=40+\sqrt[]{1100-p}\text{ or }x=40-\sqrt[]{1100-p}[/tex]Let's put p = 600 and solve
[tex]\begin{gathered} x=40+\sqrt[]{1100-p}\text{ or }x=40-\sqrt[]{1100-p} \\ x=40+\sqrt[]{1100-600}\text{ or }x=40-\sqrt[]{1100-600} \\ x=62.360\text{ or }x=17.639 \end{gathered}[/tex]Therefore for p = 600 the ticket price and be 62.360 or 17.639.
Let's solve it using the quadratic function to check if our result is correct:
[tex]600=-x^2+80x-500[/tex]We must have zero on one side, then
[tex]\begin{gathered} 600=-x^2+80x-500 \\ \\ 0=-x^2+80x-500-600 \\ \\ -x^2+80x-1100=0 \end{gathered}[/tex]And now we solve using the quadratic formula
[tex]\begin{gathered} x=\frac{-80\pm\sqrt[]{80^2-4\cdot(-1)\cdot(-1100)}}{2\cdot(-1)} \\ \\ x=\frac{-80\pm\sqrt[]{2000}}{-2} \\ \\ x=40\pm10\, \, \sqrt[]{5} \end{gathered}[/tex]If you put that result in decimal we get
[tex]\begin{gathered} x=62.361 \\ x=17.639 \end{gathered}[/tex]