We will have the following:
The equivalent resistance is given by:
[tex]\begin{gathered} \frac{1}{R}=\frac{1}{11.1\Omega}+\frac{1}{27.1\Omega}\Rightarrow\frac{1}{R}=\frac{3820}{30081\Omega} \\ \\ \Rightarrow R=\frac{30081}{3820}\Omega\Rightarrow R\approx7.87\Omega \end{gathered}[/tex]So, the equivalent resistance is approximately 7.87 Ohms.