Find the next four terms of the following sequence: a_1=3a_n=2a_n-1+n

Given:
[tex]\begin{gathered} \text{ A}_1\text{ = 3} \\ \text{ A}_n=2A_{n-1}\text{ + n} \end{gathered}[/tex]Where,
n = term position
Since we already got the 1st term (A1 = 3), let's determine the next four terms.
2nd term: n = 2
[tex]\text{ A}_2=2A_{2-1}\text{ + }2[/tex][tex]\text{ A}_2=2A_1\text{ + }2[/tex][tex]\text{ A}_2=2(3)\text{ + }2[/tex][tex]\text{ A}_2=6\text{ + }2[/tex][tex]\text{ A}_2=8[/tex]3rd term: n = 3
[tex]\text{ A}_3=2A_{3-1}\text{ + }3[/tex][tex]\text{ A}_3=2A_2\text{ + }3[/tex][tex]\text{ A}_3=2(8)_{}\text{ + }3[/tex][tex]\text{ A}_3=16_{}\text{ + }3[/tex][tex]\text{ A}_3=19[/tex]4th term: n = 4
[tex]\text{ A}_4=2A_{4-1}\text{ + }4[/tex][tex]\text{ A}_4=2A_3\text{ + }4[/tex][tex]\text{ A}_4=2(19)\text{ + }4[/tex][tex]\text{ A}_4=38\text{ + }4[/tex][tex]\text{ A}_4=42[/tex]5th term: n = 5
[tex]\text{ A}_5=2A_{5-1}\text{ + }5[/tex][tex]\text{ A}_5=2A_4\text{ + }5[/tex][tex]\text{ A}_5=2(42)\text{ + }5[/tex][tex]\text{ A}_5=84\text{ + }5[/tex][tex]\text{ A}_5=89[/tex]Therefore, the next four terms of the following sequence are: 8, 19, 42, 89.