In this case the answers is very simple . .
We must analyze the question and write the corresponding equation.
Direct variation equation is:
[tex]\begin{gathered} y\text{ = k }\cdot\sqrt[]{x} \\ y\text{ = 3 when} \\ x\text{ = 25 } \\ y\text{ = k }\cdot\text{ }\sqrt[]{x} \\ 3\text{ = k }\sqrt[]{25} \end{gathered}[/tex][tex]\begin{gathered} \frac{3}{\sqrt[]{25}}=\text{ k } \\ \frac{3}{5}=\text{ }k \end{gathered}[/tex]The answer is:
The constant of variation k is 3/5 = 0.6