Given that the total length of the tape, d = 261 m
The time taken is
[tex]\begin{gathered} t=2.4\text{ h} \\ =2.4\times60\times60 \\ =8640\text{ s} \end{gathered}[/tex]The linear speed will be
[tex]v=\frac{d}{t}[/tex]Substituting the values, the speed will be
[tex]\begin{gathered} v=\frac{261}{8640} \\ =0.0302\text{ m/s} \end{gathered}[/tex]Also, the inner radius is
[tex]\begin{gathered} r_i=11\text{ mm} \\ =0.011m\text{ } \end{gathered}[/tex]The outer radius is
[tex]\begin{gathered} r_o=48\text{ mm} \\ =0.048\text{ m} \end{gathered}[/tex]The radius will be
[tex]\begin{gathered} r\text{ =}\frac{0.011+0.048}{2} \\ =0.0295\text{ m} \end{gathered}[/tex]The angular speed will be given by the formula,
[tex]\begin{gathered} \omega=\frac{v}{r} \\ =\frac{0.0302}{0.0295} \\ =1.023\text{ rad/s} \end{gathered}[/tex]Thus, the common angular speed is 1.023 rad/s.