Respuesta :

If the point in the angle's terminal side is P = (x,y) then the trigonometric functions can be calculated as:

sin α = y/r

cos α = x/r

tan α = y/x

cot α = x/y

sec α = r/x

csc α = r/y

Where r is

[tex]\sqrt{x^2+y^2}[/tex]

For the given point we have:

[tex]r=\sqrt{(-5)^2+(8)^2}=\sqrt{25+64}=\sqrt{89}[/tex]

So the functions are:

Answer

[tex]\begin{gathered} \sin\alpha=\frac{8}{\sqrt{89}} \\ \cos\alpha=\frac{-5}{\sqrt{89}} \\ \tan\alpha=-\frac{8}{5} \\ cot\text{ }\alpha=-\frac{5}{8} \\ sec\text{ }\alpha=-\frac{\sqrt{89}}{5} \\ csc\text{ }\alpha=\frac{\sqrt{89}}{8} \end{gathered}[/tex]

RELAXING NOICE
Relax