Answer:
To find the altitude of the given equilateral triangle.
Altitude cuts the side at 90 degrees.
Wehave that,
In right angled triangle, a side opposite to 90 degree is hypotenuse,
Consider any other angle of the triangle as theta, then we get,
[tex]\sin\theta=\frac{opposite\text{ side}}{hypotenuse}[/tex]Here, let theta= 60 degree, we get,
Opposite side= a
hypotenuse= 6
Substitute th values we get,
[tex]\sin60\degree=\frac{a}{6}[/tex][tex]\frac{\sqrt{3}}{2}=\frac{a}{6}[/tex][tex]a=\frac{6\sqrt{3}}{2}[/tex][tex]a=3\sqrt{3}[/tex]Answer is:
[tex]a=3\sqrt{3}[/tex]