Which two values of x are roots of the polynomial below?4x2 - 6x + 1D AX=-8 - 1286-6I B. X =€ + √5216O c. x=6- V20X8O D. =-6 - 5216D E.-8 + V286F. x=6 + V208

Respuesta :

Given the polynomial:

[tex]4x^2-6x+1[/tex]

We use the general formula for second degree equations

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

Where: a = 4, b = -6 and c = 1

[tex]x_{1,2}=\frac{-(-6)\pm\sqrt[]{(-6)^2-4\cdot4\cdot1}}{2\cdot4}[/tex]

Simplify

[tex]\begin{gathered} x_{1,2}=\frac{6\pm\sqrt[]{36-16}}{8} \\ x_{1,2}=\frac{6\pm\sqrt[]{20}}{8} \end{gathered}[/tex]

So, the roots are:

[tex]\begin{gathered} x=\frac{6+\sqrt[]{20}}{8} \\ \text{and} \\ x=\frac{6-\sqrt[]{20}}{8} \end{gathered}[/tex]

Answer:

C and F

RELAXING NOICE
Relax