For the question below identify each with a coordinating response. Be sure to clearly label each part of your response as part a, part b, and part c.


Given the sequence:
[tex]3,5,9,17,...[/tex]Part A:
You can identify that each term is found by multiplying the previous term by 2 and then subtracting 1 to the Product.
Then, you can write the following equation to represent the pattern:
[tex]a_n=2a_{(n-1)}-1[/tex]Where the previous term is:
[tex]a_{(n-1)}[/tex]And the nth term is:
[tex]a_n[/tex]Parts B and C:
You know the first four terms.
Then, using the equation found in Part A, you can determine that the next five terms are:
[tex]a_5=2a_4-1=2(17)-1=33[/tex][tex]a_6=2a_5-1=2(33)-1=65[/tex][tex]a_7=2a_6-1=2(65)-1=129[/tex][tex]a_8=2a_7-1=2(129)-1=257[/tex][tex]a_9=2a_8-1=2(257)-1=513[/tex][tex]a_{10}=2a_9-1=2(513)-1=1025[/tex]Hence, the answers are:
Part A: Each term is found by multiplying the previous term by 2 and then subtracting 1 to the Product:
[tex]a_n=2a_{(n-1)}-1[/tex]Part B:
[tex]\begin{gathered} a_5=33 \\ a_6=65 \\ a_7=129 \\ a_8=257 \\ a_9=513 \\ a_{10}=1025 \end{gathered}[/tex]Part C:
[tex]a_5=2a_4-1=2(17)-1=33[/tex][tex]a_6=2a_5-1=2(33)-1=65[/tex][tex]a_7=2a_6-1=2(65)-1=129[/tex][tex]a_8=2a_7-1=2(129)-1=257[/tex][tex]a_9=2a_8-1=2(257)-1=513[/tex]