Respuesta :

Given the sequence:

[tex]3,5,9,17,...[/tex]

Part A:

You can identify that each term is found by multiplying the previous term by 2 and then subtracting 1 to the Product.

Then, you can write the following equation to represent the pattern:

[tex]a_n=2a_{(n-1)}-1[/tex]

Where the previous term is:

[tex]a_{(n-1)}[/tex]

And the nth term is:

[tex]a_n[/tex]

Parts B and C:

You know the first four terms.

Then, using the equation found in Part A, you can determine that the next five terms are:

[tex]a_5=2a_4-1=2(17)-1=33[/tex]

[tex]a_6=2a_5-1=2(33)-1=65[/tex][tex]a_7=2a_6-1=2(65)-1=129[/tex][tex]a_8=2a_7-1=2(129)-1=257[/tex][tex]a_9=2a_8-1=2(257)-1=513[/tex][tex]a_{10}=2a_9-1=2(513)-1=1025[/tex]

Hence, the answers are:

Part A: Each term is found by multiplying the previous term by 2 and then subtracting 1 to the Product:

[tex]a_n=2a_{(n-1)}-1[/tex]

Part B:

[tex]\begin{gathered} a_5=33 \\ a_6=65 \\ a_7=129 \\ a_8=257 \\ a_9=513 \\ a_{10}=1025 \end{gathered}[/tex]

Part C:

[tex]a_5=2a_4-1=2(17)-1=33[/tex]

[tex]a_6=2a_5-1=2(33)-1=65[/tex][tex]a_7=2a_6-1=2(65)-1=129[/tex][tex]a_8=2a_7-1=2(129)-1=257[/tex][tex]a_9=2a_8-1=2(257)-1=513[/tex]
RELAXING NOICE
Relax