The desired temperature is 350 degrees Fahrenheit at 5 minutes.
The oven's temperature is 134 degrees Fahrenheit at 1 minute.
[tex](1,134),(5,350)[/tex]Since, it is a linear function, we have;
[tex]\begin{gathered} T(m)=sm+c \\ \text{Where s is the constant rate.} \\ s=\frac{y_2-y_1}{x_2-x_1} \\ s=\frac{350-134}{5-1} \\ s=\frac{216}{4} \\ s=54 \end{gathered}[/tex]Then, applying the point slope formula, we have;
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y-134=54(x-1) \\ y=54x-54+134 \\ y=54x+80 \end{gathered}[/tex]Relating it back to the context of the question, we have;
[tex]\begin{gathered} T(m)=54m+80 \\ \text{Where T(m)= temperature and m= minutes} \end{gathered}[/tex]