Respuesta :
A=LW
multily
remmber
[tex](x^m)(x^n)=x^{m+n}[/tex]
so
[tex](16x^7)(48x^4)=(16)(x^7)(48)(x^4)=[/tex][tex](16)(48)(x^7)(x^4)(768)(x^{7+4})=768x^{11}[/tex]
multily
remmber
[tex](x^m)(x^n)=x^{m+n}[/tex]
so
[tex](16x^7)(48x^4)=(16)(x^7)(48)(x^4)=[/tex][tex](16)(48)(x^7)(x^4)(768)(x^{7+4})=768x^{11}[/tex]
Answer:
The area of the rectangular pasture is [tex]768x^{11}\ unit^{2}.[/tex]
Step-by-step explanation:
Formula
Area of a rectangle = Length × Breadth
As given
A rectangular pasture has a fence around the perimeter. The length of the fence is [tex]16x^{7}[/tex] and the width is [tex]48x^{4}[/tex].
Put all the values in the formula
[tex]Area\ of\ a\ rectangular\ pasture = 16x^{7}\times 48x^{4}[/tex]
Now by using the exponent
[tex]x^{a}\times x^{b} = x^{a+b}[/tex]
[tex]Area\ of\ a\ rectangular\ pasture = 16\times 48\times (x^{7+4})[/tex]
[tex]Area\ of\ a\ rectangular\ pasture = 768(x^{11})[/tex]
Therefore the area of the rectangular pasture is [tex]768x^{11}\ unit^{2}.[/tex]