Respuesta :

Given

Make up a set of five data items.

The mean of a five data items is 4.

The median is 3.

To show that the answer is correct and to find the standard deviation of your data.

Explanation:

Consider the five data items as, 1, 2, 3, 5, 9.

Then,

[tex]\begin{gathered} \operatorname{mean}=\frac{1+2+3+5+9}{5} \\ =\frac{20}{5} \\ =4 \end{gathered}[/tex]

Also,

[tex]\operatorname{median}=3\text{ (}\because\text{ n=5 is odd)}[/tex]

Hence, it is proved.

Therefore, the standard deviation is,

[tex]\begin{gathered} \text{ Standard deviation}=\sqrt[]{(\frac{\sum ^{}_{}x^2}{n})-(\frac{\sum ^{}_{}x}{n})^2} \\ =\sqrt[]{(\frac{1^2+2^2+3^2+5^2+9^2}{n})-(4)^2} \\ =\sqrt[]{\frac{1+4+9+25+81}{5}-16} \\ =\sqrt[]{\frac{120}{5}-16}_{} \\ =\sqrt[]{24-16} \\ =\sqrt[]{8} \\ =2\sqrt[]{2} \end{gathered}[/tex]

Hence, the standard deviation is

[tex]2\sqrt[]{2}[/tex]

RELAXING NOICE
Relax