The given equation is:
[tex](u+4)^2-4=0[/tex]By transferring '-4' to the R.H.S of the equation, we have:
[tex]\begin{gathered} (u+4)^2=0+4 \\ (u+4)^2=4 \end{gathered}[/tex]By taking the square root of both sides, we have:
[tex]\begin{gathered} \sqrt[]{(u+4)^2}=\sqrt[]{4} \\ \end{gathered}[/tex]Thus, we have:
[tex]\begin{gathered} u+4=\pm2 \\ u=\pm2-4 \end{gathered}[/tex]This implies that:
[tex]\begin{gathered} u=-2-4\text{ OR +2-4} \\ u=-6\text{ OR -2} \end{gathered}[/tex]Hence, it has more than one solution and they are -6 and -2