Given
total number , n= 10
successful events , x = 6
probability of success, p =45% = 0.45
probability of failure , q = 1 - p = 1 - 0.45 = 0.55
Find
the probability exactly 6
Explanation
Use binomial probability formula ,
[tex]P(x)=^nC_xp^x(1-p)^{n-x}[/tex]so ,
[tex]\begin{gathered} P(x)=^{10}C_6(0.45)^6(0.55)^4 \\ \\ P(x)=\frac{10!}{6!4!}\times0.00830376563\times0.09150625 \\ \\ P(x)=0.159567755 \end{gathered}[/tex]Final Answer
Probability of exact 6 = 0.160