We have the following:
[tex]\begin{gathered} x+3y-z=2 \\ x+y-z=0 \\ 3x+2y-3z=-1 \end{gathered}[/tex]solving for elimination:
[tex]\begin{bmatrix}{1} & {3} & -1 \\ {1} & {1} & {1} \\ {3} & {2} & {-3}\end{bmatrix}=\begin{aligned}2 \\ 0 \\ -1\end{aligned}[/tex]R1 <-> R3
[tex]\begin{bmatrix}{3} & {2} & -3 \\ {1} & {1} & {1} \\ {1} & {3} & {-1}\end{bmatrix}=\begin{aligned}-1 \\ 0 \\ 2\end{aligned}[/tex]R2 - 1/3*R1
[tex]\begin{bmatrix}{3} & {2} & -3 \\ {0} & {\frac{1}{3}} & {0} \\ {1} & {3} & {-1}\end{bmatrix}=\begin{aligned}-1 \\ \frac{1}{3} \\ 2\end{aligned}[/tex]R3 - 1/3 * R1
[tex]\begin{bmatrix}{3} & {2} & -3 \\ {0} & {\frac{1}{3}} & {0} \\ {0} & {\frac{7}{3}} & {0}\end{bmatrix}=\begin{aligned}-1 \\ \frac{1}{3} \\ \frac{7}{3}\end{aligned}[/tex]R2 <-> R3
[tex]\begin{bmatrix}{3} & {2} & -3 \\ {0} & {\frac{7}{3}} & {0} \\ {0} & {\frac{1}{3}} & {0}\end{bmatrix}=\begin{aligned}-1 \\ \frac{7}{3} \\ \frac{1}{3}\end{aligned}[/tex]R3 - 1/7*R2
[tex]\begin{bmatrix}{3} & {2} & -3 \\ {0} & {\frac{7}{3}} & {0} \\ {0} & {0} & {0}\end{bmatrix}=\begin{aligned}-1 \\ \frac{7}{3} \\ 0\end{aligned}[/tex]Zero row in reduced matrix indicates infinite solutions