Given:
[tex]\begin{gathered} \text{length of arc MN = 3}\pi cm \\ \text{length of arc }RE\text{ = }6\pi cm \\ \text{angle subtended at the center = }30 \end{gathered}[/tex]
The subtended by both arcs is the same
From the length of arc formula:
[tex]\text{length of arc = }\frac{\theta}{360}\text{ }\times\text{ 2}\pi r[/tex]
Let us walk through the options to check which is correct
Radius of the larger circle:
[tex]\begin{gathered} r\text{ = }\frac{l\times\text{ 360}}{\theta\text{ }\times\text{ 2}\pi} \\ =\text{ }\frac{6\pi\text{ }\times\text{ 360}}{30\text{ }\times\text{ 2}\pi} \\ =\text{ 36 }cm \end{gathered}[/tex]
Radius of the smaller circle:
[tex]\begin{gathered} r\text{ = }\frac{l\times\text{ 360}}{\theta\text{ }\times\text{ 2}\pi} \\ =\text{ }\frac{3\pi\text{ }\times\text{ 360}}{30\text{ }\times\text{ 2}\pi} \\ =\text{ 18 }cm \end{gathered}[/tex]
The length of the segment NE:
This is difference between the radius of the larger circle and that of the smaller circle:
[tex]\begin{gathered} =\text{ }36\text{ - 18} \\ =\text{ 18 }cm \end{gathered}[/tex]
The length of the segment MR:
This is difference between the radius of the larger circle and that of the smaller circle:
[tex]\begin{gathered} =\text{ 36 - 18} \\ =\text{ 18 }cm \end{gathered}[/tex]
The circumference of the larger circle:
[tex]\begin{gathered} =\text{ 2}\pi r \\ =\text{ 2 }\times\text{ }\pi\text{ }\times\text{ 36} \\ =\text{ 72}\pi cm \end{gathered}[/tex]
Hence, the statements that are correct are:
Statement 2
Statement 4
Statement 5