Let f(x) = x^2 and g(x) = x + 5, find: a. (f o g)(x)= b. ( g o f)(x)= c. (f o g)(5)= d. (g o f)(5)=

Solution:
Given the functions;
[tex]f(x)=x^2,g(x)=x+5[/tex](a)
[tex]\begin{gathered} (f\circ g)(x)=f(g(x)) \\ \\ (f\circ g)(x)=f(x+5) \\ \\ (f\circ g)(x)=(x+5)^2 \\ \\ (f\circ g)(x)=x^2+10x+25 \end{gathered}[/tex](b)
[tex]\begin{gathered} (g\circ f)(x)=g(f(x)) \\ \\ (g\circ f)(x)=g(x^2) \\ \\ (g\circ f)(x)=x^2+5 \end{gathered}[/tex](c)
[tex]\begin{gathered} (f\circ g)(x)= x^{2}+10x+25 \\ \\ (f\circ g)(5)=5^2+10(5)+25 \\ \\ (f\circ g)(5)=100 \end{gathered}[/tex](d)
[tex]\begin{gathered} (g\circ f)(x)= x^{2}+5 \\ \\ (g\circ f)(5)=5^2+5 \\ \\ (g\circ f)(5)=30 \end{gathered}[/tex]