Given:
Sum of two numbers = 33
The larger number is 3 more than two times the smaller number.
Find the number
Sol:
Let a smaller number be "x"
So larger number is:
[tex]\begin{gathered} \text{ Smaller number = }x \\ \\ \text{ larger number = }2x+3 \end{gathered}[/tex]Sum of the two numbers is 33.
Then,
[tex]\begin{gathered} \text{ Smaller number }+\text{ Larger number = }33 \\ \\ x+2x+3=33 \end{gathered}[/tex]Solve for "x"
[tex]\begin{gathered} x+2x+3=33 \\ \\ 3x+3=33 \\ \\ 3x=33-3 \\ \\ 3x=30 \\ \\ x=\frac{30}{3} \\ \\ x=10 \end{gathered}[/tex]So, the smaller number is 10
[tex]\begin{gathered} \text{ larger number =}2x+3 \\ \\ =2(10)+3 \\ \\ =20+3 \\ \\ =23 \end{gathered}[/tex]The larger number is 23.
[tex]\begin{gathered} \text{ Smaller number = }10 \\ \\ \text{ Larger number =}23 \end{gathered}[/tex]