Modelling it to linear equation
[tex]\begin{gathered} y=mx+b \\ \text{where} \\ m=\text{slope} \\ b=y-\text{intercept} \end{gathered}[/tex]
Therefore,
[tex]\begin{gathered} y=\cos t \\ x=\text{amount of water} \end{gathered}[/tex]
(16, 35.99)(45, 83.84)
[tex]\begin{gathered} m=\frac{83.84-35.99}{45-16}=\frac{47.85}{29}=1.65 \\ y=1.65x+b \\ 35.99=1.65(16)+b \\ 35.99-26.4=b \\ b=9.59 \\ \\ y=1.65x+9.59 \end{gathered}[/tex]
let's find the cost for using 24 HCF water
[tex]\begin{gathered} y=1.65(24)+9.59 \\ y=39.6+9.59 \\ y=49.19 \\ \cos t\text{ = \$49.19} \end{gathered}[/tex]