Given a polynomial P(x), if we know the roots a, b and c then we can rewrite the polynomial as:
[tex]P(x)=(x-a)(x-b)(x-c)[/tex]In this case, we are given:
[tex](x-3)(x+2)(x-1)=0[/tex]Then, we can find the roots, multiplying the constant inside the parentheses by (-1):):
[tex]\begin{gathered} First\text{ }root=(-1)(-3)=3 \\ Second\text{ }root=(-1)\cdot2=-2 \\ Third\text{ }root=(-1)(-1)=1 \end{gathered}[/tex][tex][/tex]Roots: -2, 1, 3