Respuesta :

Answer

[tex]\frac{m^8-1}{m-1}[/tex]

Apply exponent rules

[tex]\frac{(m^4)^2-1}{m-1}[/tex]

Apply difference of two square formula

[tex]\begin{gathered} x^2-y^2=(x^{}-y)(x+y) \\ (m^4)^2-1^2=(m^4-1)(m^4+1) \end{gathered}[/tex][tex]\frac{(m^4+1)(m^4-1)}{m-1}[/tex]

Apply exponent rule

[tex]\frac{(m^4+1)(m^4-1)}{m-1}=\frac{(m^4+1)(m^2)^2-1^2)}{m-1}[/tex]

Apply difference of two square formula

[tex](m^2)^2-1^2=(m^2+1)(m^2-1)[/tex][tex]\frac{(m^4+1)(m^2+1)(m^2-1)}{m-1}[/tex]

factor

[tex]m^2-1=(m+1)(m-1)_{}[/tex][tex]\frac{(m^4+1)(m^2+1)(m^{}+1)(m-1)}{m-1}[/tex]

Cancel the common factor (m-1)

The final answer

[tex](m^4+1)(m^2+1)(m^{}+1)[/tex]

RELAXING NOICE
Relax