Given
Solar radiation at the top of the atmosphere,
[tex]Q=1340\text{ W/m}^2[/tex]Solar radiation at the bottom of the atmosphere,
[tex]Q^{\prime}=700\text{ W/m}^2[/tex]Solar radiation absorbed by the atmosphere is
[tex]\begin{gathered} \\ P=640\text{ W/m}^2 \end{gathered}[/tex]The time, t=24 hr=24x60x60 s
Specific heat,
[tex]s=\frac{1000J}{kg^oC}[/tex]The radius of the earth,
[tex]R_1=3959\text{ miles=6371392.89 metres}[/tex]The length with the atmosphere,
[tex]R_2=6371392.89+80000=6451392.896m[/tex]To find
Determine how much the temperature would increase in the atmosphere by the absorption of the solar radiation
Explanation
Volume of the atmosphere,
[tex]\begin{gathered} V=\frac{4}{3}\pi(R_2^3-R_1^3) \\ \Rightarrow V=\frac{4}{3}\pi(6451392.896^3-6371392.89^3) \\ \Rightarrow V=4.13\times10^{19}m^3 \end{gathered}[/tex]Now,
Mass
[tex]m=1.225\times1000=5.06\times10^{19}=5.06\times10^{19}kg[/tex]Thus the change in temperature is
[tex]dT=\frac{640\times24\times60\times60\times4\pi(6.37\times10^6)^2}{5.06\times10^{19}\times1000}=0.57^oC[/tex]Conclusion
The change in temperature is
[tex]0.57^oC[/tex]