step 1
Find out the area of the circle
[tex]A=\pi\cdot r^2[/tex]where
r=4 units
substitute
[tex]\begin{gathered} A=\pi\cdot4^2 \\ A=16\pi\text{ unit2} \end{gathered}[/tex]step 2
Find out the area of the sector
Remember that
The area of the complete circle subtends a central angle of 2pi radians
so
Applying proportion
Find out the area of the sector by a central angle of 2pi/3 radians
16pi/2pi=x/(2pi/3)
solve for x
x=8*(2pi/3)
x=16pi/3 unit2
the area of the sector is 16pi/3 unit2
step 3
Find out the circumference of the circle
[tex]\begin{gathered} C=2\pi r \\ C=2\pi\cdot(4) \\ C=8\pi\text{ unit} \end{gathered}[/tex]step 4
Find out the arc length by a central angle of 2pi/3 radians
Remember that
The circumference of the circle subtends a central angle of 2pi radians
so
Applying proportion
8pi/2pi=x/(2pi/3)
x=4*(2pi/3)
x=8pi/3 units
therefore
Verify each statement
N 1 -----> false
N 2 ----> true
N 3 ---> true