Respuesta :

Recall that the diagonals of a rectangle bisect each other and are congruent, therefore:

[tex]\begin{gathered} FH=2EI, \\ GI=EI. \end{gathered}[/tex]

Substituting the given expression for each segment in the first equation, we get:

[tex]3x+6=2(2x-2).[/tex]

Solving the above equation for x, we get:

[tex]\begin{gathered} 3x+6=4x-4, \\ 3x+6+4=4x, \\ 3x+10=4x, \\ 4x-3x=10, \\ x=10. \end{gathered}[/tex]

Substituting x=10 in the equation for segment EI, we get:

[tex]EI=2*10-2=20-2=18.[/tex]

Therefore:

[tex]GI=18.[/tex]

Now, to determine the measure of angle IEH, we notice that:

[tex]\Delta HFG\cong\Delta GEH,[/tex]

therefore,

[tex]\measuredangle GHF\cong\measuredangle HGE.[/tex]

Using the facts that the triangles are right triangles and that the interior angles of a triangle add up to 180° we get:

[tex]m\measuredangle IEH=90^{\circ}-35^{\circ}=55^{\circ}.[/tex]

Answer:

[tex]\begin{gathered} m\operatorname{\measuredangle}IEH=55^{\operatorname{\circ}}, \\ GI=18. \\ \end{gathered}[/tex]

RELAXING NOICE
Relax