In the rectangle below, E1=2x -2, FH=3x+6, and m 4IHG =35°.Find Gl and m LIEH

Recall that the diagonals of a rectangle bisect each other and are congruent, therefore:
[tex]\begin{gathered} FH=2EI, \\ GI=EI. \end{gathered}[/tex]Substituting the given expression for each segment in the first equation, we get:
[tex]3x+6=2(2x-2).[/tex]Solving the above equation for x, we get:
[tex]\begin{gathered} 3x+6=4x-4, \\ 3x+6+4=4x, \\ 3x+10=4x, \\ 4x-3x=10, \\ x=10. \end{gathered}[/tex]Substituting x=10 in the equation for segment EI, we get:
[tex]EI=2*10-2=20-2=18.[/tex]Therefore:
[tex]GI=18.[/tex]Now, to determine the measure of angle IEH, we notice that:
[tex]\Delta HFG\cong\Delta GEH,[/tex]therefore,
[tex]\measuredangle GHF\cong\measuredangle HGE.[/tex]Using the facts that the triangles are right triangles and that the interior angles of a triangle add up to 180° we get:
[tex]m\measuredangle IEH=90^{\circ}-35^{\circ}=55^{\circ}.[/tex]