Respuesta :

Explanation:

Given that

[tex]\begin{gathered} \log_43\approx0.7925 \\ find \\ \log_4(\frac{1}{9}) \end{gathered}[/tex]

Apply the law of fractional indices below

[tex]\frac{1}{a}=a^{-1}[/tex]

By applying the law, we will have that

[tex]\begin{gathered} \frac{1}{9}=9^{-1} \\ recall: \\ 9=3^2 \\ 9^{-1}=3^{-2} \end{gathered}[/tex]

By rewriting the expression, we will have

[tex]\operatorname{\log}_4(\frac{1}{9})=\log_4(3^{-2})[/tex]

Apply the logarithmi law of exponents below

[tex]\log_ba^c=c\log_ba[/tex][tex]\begin{gathered} \log_4(3^{-2})=-2\log_43 \\ -2\log_43=-2(0.7925) \\ =-1.5850 \end{gathered}[/tex]

Hence,

The final answer to 4 decimal places is

[tex]-1.5850[/tex]

Ver imagen ZahairE675214
RELAXING NOICE
Relax