ANSWER:
A) 38.64 feet.
B) 2.960 seconds
STEP-BY-STEP EXPLANATION:
We have that the function that models the situation of the statement is the following:
[tex]h(t)=-16t^2+45t+7[/tex]
A)
We can calculate this height, which would be the maximum height it can reach before it begins to decay, as follows:
[tex]\begin{gathered} t_v=-\frac{b}{2a} \\ \\ \text{ in this case b = 45, a = -16, we replacing:} \\ \\ t_v=-\frac{45}{-16\cdot2}=\frac{45}{32} \\ \\ t_v=1.406\text{ sec} \\ \\ \text{ Now, we replace in the function this time like this: } \\ \\ h(t)=-16\left(1.406\right)^2+45\left(1.406\right)+7 \\ \\ h(t)=38.64\text{ ft} \end{gathered}[/tex]
Therefore, the height is equal to 38.64 feet.
B)
To determine the time when the ground, we must make the height 0 and solve for t, just like this:
[tex]\begin{gathered} 0=-16t^2+45t+7 \\ \\ -16t^2+45t+7=0 \\ \\ \text{ We use the general formula for quadratic equations} \\ \\ x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} \\ \\ a=-16,b=45,c=7 \\ \\ \text{ We replacing} \\ \\ t=\frac{-45\pm\sqrt{45^2-4(-16)(7)}}{2(-16)} \\ \\ t=\frac{-45\pm\sqrt{2473}}{-32} \\ \\ t_1=\frac{-45+\sqrt{2473}}{-32}=-0.148 \\ \\ t_2=\frac{-45-\sqrt{2473}}{-32}=\:2.960 \end{gathered}[/tex]
Therefore, the time is equal to 2.960 seconds