The figure below shows rectangle ABCD and triangle ECA on a coordinate plane which of the following expressions represents the perimeter of triangle ECA in units

The Solution:
Given:
Required:
To find the perimeter of the triangle ECA.
By the Pythagorean Theorem,
[tex]\begin{gathered} 10^2+4^2=CA^2 \\ 100+16=CA^2 \\ CA^2=116 \end{gathered}[/tex][tex]|CA|=\sqrt{116}^=2\sqrt{29}[/tex]Step 2:
Find the length of AE.
[tex]|AE|=\sqrt{(-8-6)^2+(-9--1)^2}=2\sqrt{65}[/tex]step 3:
Find EC.
[tex]\lvert EC\rvert=\sqrt{(4--8)^2+(3--9)^2}=12\sqrt{2}[/tex]So, the required perimeter is:
[tex]P=(2\sqrt{29}+2\sqrt{65}+12\sqrt{2})[/tex]