Answer:
[tex]\begin{gathered} Domain:(-\infty,-3)\cup(-3,\infty) \\ Range:(-\infty,1)\cup(1,\infty) \end{gathered}[/tex]Explanation:
Given the function:
[tex]l(x)=\frac{x-1}{x+3}[/tex]Domain
The domain of a function is the set of the values of x at which the function is defined.
A rational function is undefined when its denominator equals 0.
[tex]\begin{gathered} x+3=0 \\ x=-3 \end{gathered}[/tex]Therefore, the domain of l(x) is:
[tex](-\infty,-3)\cup(-3,\infty)[/tex]Range
The range of a function is the set of the values of L(x) at which the function is defined.
Since L(x) is a rational function, find the horizontal asymptote.
[tex]Horizontal\;Asymptote,y=1[/tex]Therefore, the range of the function is:
[tex](-\infty,1)\cup(1,\infty)[/tex]