Respuesta :
Given:
• Sample size, n = 33
,• Sample mean, x' = 124.47
,• Standard deviation, σ = 10.68
Let's construct the 90% and 95% confidence interval.
• (a). 90% confidence interval.
For a 90% confidence interval, the level of significance, α = 1 - 0.90 = 0.10
Using the z-score table, we have:
[tex]z_{\frac{\alpha}{2}}=z_{\frac{0.10}{2}}=z_{0.05}=1.645[/tex]Now, let's find the margin of error, E:
[tex]\begin{gathered} E=z_{\frac{\alpha}{2}}\times\frac{\sigma}{\sqrt[]{n}} \\ \\ E=1.645\times\frac{10.68}{\sqrt[]{33}} \\ \\ E=3.058 \end{gathered}[/tex]To find the 90% confidence interval, apply the formula:
[tex]\begin{gathered} C.I=x^{\prime}\pm E \\ \\ CI=124.47\pm3.058 \\ \\ C\mathrm{}I=124.47-3.058,\text{ 124.47 + 3.058} \\ \\ C\mathrm{}I=121.41,\text{ }127.53 \end{gathered}[/tex]The 90% confidence interval is ( 121.41, 127.53)
• (,b). ,The 95% confidence interval
The level of significance: 1 - 0.95 = 0.05
Find the z-score using the z-score table:
[tex]z_{\frac{\alpha}{2}}=z_{\frac{0.05}{2}}=z_{0.025}=1.96[/tex]Now, find the margin of error:
[tex]\begin{gathered} E=z_{\frac{\alpha}{2}}\times\frac{\sigma}{\sqrt[]{n}} \\ \\ E=1.96\times\frac{10.68}{\sqrt[]{33}} \\ \\ E=3.644 \end{gathered}[/tex]To find the 95% confidence interval, we have:
[tex]\begin{gathered} CI=x^{\prime}\pm E \\ \\ CI=124.47\pm3.644 \\ \\ CI=124.47-3.644,\text{ 124.47+3.644} \\ \\ CI=120.83,\text{ 128.11} \end{gathered}[/tex]The 95% confidence interval is 120.83, 128.11
ANSWER:
90% confidence interval is ( 121.41, 127.53)
95% confidence interval is (120.83, 128.11)
