Respuesta :

Given the points (-1,6) and (3,5).

The formula to find the slope is

[tex]m=\frac{y_2-y_1_{}}{x_2-x_1}[/tex]

Take

[tex]x_1=-1,y_1=6,x_2=3,y_2=5[/tex]

Plug the values into the formula and find the slope.

[tex]\begin{gathered} m=\frac{5-6}{3-(-1)} \\ =\frac{-1}{4} \end{gathered}[/tex]

The slope-intercept form is y = mx+b.

Plug the value of m.

[tex]y=-\frac{1}{4}x+b[/tex]

ThusConsider the point (-1,6). Substitute -1 for x and for y into the equation.

[tex]\begin{gathered} 6=-\frac{1}{4}(-1)+b \\ =\frac{1}{4}+b \\ b=6-\frac{1}{4} \\ =\frac{23}{4} \end{gathered}[/tex]

Thus, the equation of the line in slope intercept form is

[tex]y=-\frac{1}{4}x+\frac{23}{4}[/tex]

RELAXING NOICE
Relax