Part C.
Given:
Mass of ball P, Mp = mass of ball Q, MQ
Volume of P, Vp = 2 times volume of ball Q, 2VQ
Let's determine the ball with the greater density.
Apply the formula:
[tex]\rho=\frac{m}{v}[/tex]
Now, for densities of both balls, we have:
[tex]\begin{gathered} \rho_p=\frac{m_p}{v_p}=\frac{m_{}}{2v_Q} \\ \\ \rho_Q=\frac{m}{v_Q} \end{gathered}[/tex]
Now, divide density of P by density of Q:
[tex]\begin{gathered} \frac{\rho_P}{\rho_Q}=\frac{\frac{m}{2v_Q}}{\frac{m}{v_Q}} \\ \\ =\frac{m}{2v_Q}*\frac{v_Q}{m} \\ \\ =\frac{1}{2} \end{gathered}[/tex]
Therefore, the density of ball P is 1/2 the density of the density of ball Q.
Hence, ball Q will have a greater density.
• (d). ,Given:
Volume of ball X = 2 * volume of ball Y
Mass of X = 1/2 * mass of ball Y.
We have:
[tex]\begin{gathered} \rho_X=\frac{\frac{1}{2}m_Y}{2v_Y} \\ \\ \rho_Y=\frac{m_Y}{v_Y} \end{gathered}[/tex]
Divide density of ball X by that of ball Y:
[tex]\begin{gathered} \frac{\rho_X}{\rho_Y}=\frac{\frac{\frac{1}{2}m_Y}{2v_Y}}{\frac{m_Y}{v_Y}} \\ \\ =\frac{\frac{1}{2}m_Y}{2v_Y}*\frac{v_Y}{m_Y} \\ \\ =\frac{1}{2}*\frac{1}{2} \\ \\ =\frac{1}{4} \end{gathered}[/tex]
Therefore, the density of ball X is 1/4 the density of ball Y.
Hence, ball Y will have the greater density.
ANSWER:
(c). Ball Q has the greater density
(d). Ball Y has the greater density