38) We must find the value of xx from the following equation:
[tex]\sqrt[]{3\cdot xx-8}=5[/tex]In order to find xx we take the square at both sides:
[tex]\begin{gathered} (\sqrt[]{3\cdot xx-8})^2=5^2 \\ 3\cdot xx-8=25 \end{gathered}[/tex]Now we find the value of x:
[tex]\begin{gathered} 3\cdot xx=25+8 \\ 3\cdot xx^{}=33 \\ x^{}x=\frac{33}{3} \\ xx=11 \end{gathered}[/tex]The answer of 38 is: b. 11
33) Again, we must find the value of the unknown xx from the following equation:
[tex]\frac{3}{xx}=\frac{5}{xx-2}[/tex]We cross multiply by the denominators and we find:
[tex]3(xx-2)=5\cdot xx[/tex]Now we aplly the distributive law for the multiplication:
[tex]\begin{gathered} 3\cdot xx-6=5\cdot xx \\ 3\cdot xx-5\cdot xx-6=0 \\ -2\cdot xx=6 \\ xx=-\frac{6}{2} \\ xx=-3 \end{gathered}[/tex]So the answer of 37 is: b. -3