Respuesta :

From the diagram above,

XZ = 10 in and OX = 10 in

we are to find length of OY

XZ is a chord and line OY divides the chord into equal length

Hence, ZY=YX= 5 in

Now we solve the traingle OXY

To find OY we solve using pythagoras theorem

[tex](Hyp)^2=(Opp)^2+(Adj)^2[/tex]

applying values from the triangle above

[tex]\begin{gathered} OX^2=XY^2+OY^2 \\ 10^2=5^2+OY^2 \\ 100=25+OY^2 \\ OY^2\text{ = 100 -25} \\ OY^2\text{ = 75} \\ OY\text{ = }\sqrt[]{75} \\ OY\text{ = }\sqrt[]{25\text{ }\times\text{ 3}} \\ OY\text{ = 5}\sqrt[]{3\text{ }}in \end{gathered}[/tex]

Therefore,

Length of OY =

[tex]5\sqrt[]{3}[/tex]

Ver imagen HusseinH352523
Ver imagen HusseinH352523
RELAXING NOICE
Relax