Given:
The initial number of wolves is a = 120.
The growth rate is r = 3%.
The objective is,
a) To write the formula for exponential function for the population of the wolf after t years.
b) To find the solution to the equation,
[tex]60(2.1)^x=1100\text{ . . . . .. (1)}[/tex]Explanation:
a)
The general formula for the exponential growth of population is,
[tex]y=a(1+r)^x\text{ . . . . . .(2)}[/tex]Here, x represents the number of years which is t.
On plugging the given values in equation (2)
[tex]\begin{gathered} f(t)=120(1+\frac{3}{100})^t \\ f(t)=120(1+0.03)^t \\ f(t)=120(1.03)^t \end{gathered}[/tex]b)
The solution for given equation (1) will be,
[tex]\begin{gathered} 60(2.1)^x=1100 \\ (2.1)^x=\frac{1100}{60} \\ (2.1)^x=\frac{110}{6} \end{gathered}[/tex]Multiply the natural logarithm on both sides of the equation,
[tex]\begin{gathered} ln(2.1)^x=\ln (\frac{110}{6}) \\ x=\frac{\ln (\frac{110}{6})}{\ln (2.1)} \\ x=3.92044\ldots. \\ x\approx3.92 \end{gathered}[/tex]Hence,
a) The exponential function is f(t) = 120(1.03)^t.
b) The solution of the equation is 3.92.