Use the method of equating coefficients to find the values5

Given: The equation below
[tex](x+4)(ax^2+bx+c)=2x^3+9x^2+3x-4[/tex]To Determine: The value of a, b, and c, using the method of equating coefficients
Solution
Let us expand the left hand side of the equation
[tex]\begin{gathered} (x+4)(ax^2+bx+c) \\ =ax^3+bx^2+cx+4ax^2+4bx+4c \end{gathered}[/tex]Let us collect like terms
[tex]\begin{gathered} =ax^3+bx^2+4ax^2+cx+4bx+4c \\ =ax^3+(b+4a)x^2+(c+4b)x+4c \end{gathered}[/tex]Let us comapre the coefficients of the left hand side and the right hand side
[tex]ax^3+(b+4a)x^2+(c+4b)x+4c=2x^3+9x^2+3x-4[/tex][tex]\begin{gathered} coefficient(x^3) \\ a=2 \end{gathered}[/tex][tex]\begin{gathered} coefficient(x^2) \\ b+4a=9 \\ coefficient(x) \\ c+4b=3 \\ constant \\ 4c=-4 \\ c=-\frac{4}{4} \\ c=-1 \end{gathered}[/tex]Note
[tex]\begin{gathered} b+4a=9 \\ a=2 \\ b+4(2)=9 \\ b+8=9 \\ b=9-8 \\ b=1 \end{gathered}[/tex]Hence
a = 2
b = 1
c = -1
The correct option is OPTION C