ANSWER :
Part A :
EXPLANATION :
Part A :
Note that the dot product of two vectors is given by :
[tex]\begin{gathered} A=ai+bj\quad and\quad B=ci+dj \\ A\cdot B=a(c)+b(d) \end{gathered}[/tex]From the problem, we have the vectors :
[tex]\begin{gathered} F_1=110\cos50i+110\sin50j \\ F_2=60\cos160i+60\sin160j \end{gathered}[/tex]The dot product will be :
[tex]\begin{gathered} F_1\cdot F_2=110\cos50(60\cos160)+110\sin50(60\sin160) \\ =-3986.55+1729.22 \\ =-2257.33 \end{gathered}[/tex]Part B :
The cosine of the angle between two vectors is given by :
[tex]\cos\theta=\frac{F_1\cdot F_2}{\lvert{F_1}\rvert\lvert{F_2}\rvert}[/tex]Solve for the |F1| and |F2|
[tex]\begin{gathered} \lvert{F_1}\rvert=\sqrt{(110\cos50)^2+(110\sin50)^2}=110 \\ \lvert{F_2}\rvert=\sqrt{(60\cos160)^2+(60\sin160)^2}=60 \end{gathered}[/tex]Now substitute the given values :
[tex]\begin{gathered} \cos\theta=\frac{-2257.33}{110(60)} \\ \text{ Using arccosine :} \\ \arccos(\cos\theta)=\arccos(\frac{-2257.33}{110\times60}) \\ \theta=110 \end{gathered}[/tex]The angle between two vectors is 110 degrees