Respuesta :

The given triangle is a right-angled triangle

Recall that

[tex]\tan \theta=\frac{Opposite\text{ side}}{\text{Adjacent side}}[/tex]

[tex]Let\text{ }\theta=x,\text{ then Opposite side=6 and adjacent side =4.}[/tex]

[tex]\text{Substitute known values in }\tan \theta=\frac{Opposite\text{ side}}{\text{Adjacent side}}\text{ as follows:}[/tex]

[tex]\tan x=\frac{6}{4}[/tex]

[tex]\tan x=\frac{3}{2}[/tex]

[tex]x=\tan ^{-1}(\frac{3}{2})[/tex]

[tex]Substitute\tan ^{-1}(\frac{3}{2})=56.30\text{ as follows:}[/tex]

[tex]x=56.30[/tex]

[tex]x\approx56^o[/tex]

Using the triangle sum property, we get

[tex]90^o+x+y=180^0[/tex]

[tex]x+y=180^0-90^o[/tex]

[tex]x+y=90^o[/tex]

[tex]Substitutex=56^o\text{ as follows:}[/tex]

[tex]56^o+y=90^o[/tex]

[tex]y=90^o-56^o[/tex]

[tex]y=34^o[/tex]

Hence the values of x and y are

[tex]x=56^o\text{ and }y=34^o[/tex]

Ver imagen WilZ382801
RELAXING NOICE
Relax