How do I find the X and y value in this type of triangle?

The given triangle is a right-angled triangle
Recall that
[tex]\tan \theta=\frac{Opposite\text{ side}}{\text{Adjacent side}}[/tex][tex]Let\text{ }\theta=x,\text{ then Opposite side=6 and adjacent side =4.}[/tex][tex]\text{Substitute known values in }\tan \theta=\frac{Opposite\text{ side}}{\text{Adjacent side}}\text{ as follows:}[/tex][tex]\tan x=\frac{6}{4}[/tex][tex]\tan x=\frac{3}{2}[/tex][tex]x=\tan ^{-1}(\frac{3}{2})[/tex][tex]Substitute\tan ^{-1}(\frac{3}{2})=56.30\text{ as follows:}[/tex][tex]x=56.30[/tex][tex]x\approx56^o[/tex]Using the triangle sum property, we get
[tex]90^o+x+y=180^0[/tex][tex]x+y=180^0-90^o[/tex][tex]x+y=90^o[/tex][tex]Substitutex=56^o\text{ as follows:}[/tex][tex]56^o+y=90^o[/tex][tex]y=90^o-56^o[/tex][tex]y=34^o[/tex]Hence the values of x and y are
[tex]x=56^o\text{ and }y=34^o[/tex]