c)(2,-2)
Explanation
the easiest way to find if the ordered pair is part of the solution is replacing
[tex]y+3<2x-1[/tex]Step 1
replace (2,0)
x=2
y=0
then
[tex]\begin{gathered} y+3<2x-1 \\ 0+3<2\cdot2-1 \\ 3<4-1 \\ 3<3\rightarrow false,\text{ then (2,0) is not part of the solution} \end{gathered}[/tex]Step 2
replace(0,4)
x=0
y=4
[tex]\begin{gathered} y+3<2x-1 \\ 4+3<2\cdot0-1 \\ 7<-1\rightarrow false,\text{ then (0,4) is not part of the solution} \end{gathered}[/tex]Step 3
replace (2,-2)
x=2
y=-2
[tex]\begin{gathered} y+3<2x-1 \\ -2+3<2\cdot2-1 \\ 1<4-1 \\ 1<3\rightarrow true,\text{ then (2,-2) is part of the solution} \end{gathered}[/tex]Step 4
replace (0,0)
[tex]\begin{gathered} y+3<2x-1 \\ 0+3<2\cdot0-1 \\ 3<-1,\text{ False, then (0,0) is not part of the solution} \end{gathered}[/tex]Hence, the answer is (2,-2)
I hope this helps you