Respuesta :

Consider the given equation,

[tex]4x^2-100=0[/tex]

Add 100 both sides,

[tex]\begin{gathered} 4x^2-100+100=0+100 \\ 4x^2=100 \end{gathered}[/tex]

Divide by 4 both sides,

[tex]\begin{gathered} 4x^2\cdot\frac{1}{4}=100\cdot\frac{1}{4} \\ x^2=25 \end{gathered}[/tex]

Take square roots both sides,

[tex]\begin{gathered} x=\pm\sqrt[]{25} \\ x=-5,5 \end{gathered}[/tex]

Thus, the roots of the given equation are -5 and 5.

Therefore, option C is the correct choice.

RELAXING NOICE
Relax