Since the initial mass of the substance is 120 milligrams, then:
[tex]m(0)=120.[/tex]
Therefore, the y-intercept of the graph of the given function is (0,120), also, evaluating the given function at t=0 we get:
[tex]m(0)=Ae^{-0k}=Ae^0=A\text{.}[/tex]
Therefore A=120.
Now, we know that after 10 days, the mass of the substance is 90 milligrams, then the graph of the function passes through the point (10,90), also, evaluating the given function at t=10 we get:
[tex]m(10)=120e^{-10k}.[/tex]
Therefore:
[tex]90=120e^{-10k}\text{.}[/tex]
Dividing the above equation by 120 we get:
[tex]\begin{gathered} \frac{90}{120}=\frac{120e^{-10k}}{120}, \\ \frac{3}{4}=e^{-10k}\text{.} \end{gathered}[/tex]
Applying the natural logarithm to the above equation we get:
[tex]\begin{gathered} \ln (\frac{3}{4})=\ln (e^{-10k}), \\ \ln (\frac{3}{4})=-10k\text{.} \end{gathered}[/tex]
Dividing the above equation by -10 we get:
[tex]k=-\frac{\ln (\frac{3}{4})}{10}\text{.}[/tex]
Therefore, the function that models this behavior is:
[tex]\begin{gathered} m(e)=120e^{-(-\ln (\frac{3}{4}))\cdot\frac{t}{10}}=120e^{\ln (\frac{3}{4})\cdot\frac{t}{10}}\text{.} \\ \text{for t}\ge0. \end{gathered}[/tex]
And its graph is:
Answer: