Respuesta :

For this kind of scenario, let's apply the Quarterly Compounding Formula:

[tex]A\text{ = }P\lbrack(1+r)^{4n}\rbrack[/tex]

Where,

A = The total balance of the loan including the interest = $8,000.00

P = Principal Amount (Loan amount)

r = Rate of interest = 3%

n = No. of periods = 2 years

Let's plug in the values to the formula. we get,

[tex]\text{ A = }P\lbrack(1+r)^{4n}\rbrack\text{ }\rightarrow\text{ 8,000 = }P\lbrack(1+\frac{3}{100})^{4(2)}\rbrack[/tex][tex]\text{8,000 = }P\lbrack(1+0.03)^{8)}\rbrack\text{ }\rightarrow\text{ 8,000 = }P\lbrack(1.03)^8\rbrack[/tex][tex]\text{8,000 = }P\lbrack(1.03)^8\rbrack\text{ }\rightarrow\text{ 8,000 = P(1.26677008139)}[/tex][tex]\text{P = }\frac{8,000}{\text{1.26677008139}}\text{ = \$6,315.27}[/tex]

We now get the accumulated interest:

[tex]\text{ Accumulated Interest = A - P = \$8,000 - \$6,315.27}[/tex][tex]\text{ Accumulated Interest = \$1,684.73}[/tex]

Therefore, Aubrey accumulated a total of $1,684.73 interest.

RELAXING NOICE
Relax