Given:
[tex]2x-3y\ge12[/tex]Add 3y-12 to both sides of the inequality, we get
[tex]2x-3y+3y-12\ge12+3y-12[/tex][tex]2x-12\ge3y[/tex]Dividing both sides by 3, we get
[tex]\frac{2x-12}{3}\ge\frac{3y}{3}[/tex][tex]\frac{2x-12}{3}\ge y[/tex]Let x=9 and substitute in this inequality, we get
[tex]\frac{2(9)-12}{3}\ge y[/tex][tex]\frac{18-12}{3}\ge y[/tex][tex]\frac{6}{3}\ge y[/tex][tex]2\ge y[/tex]We get 2 is greater than or equal to y.
y values are 2,1,0,...
Hence the solutions to the given inequality are
[tex](9,2),(9,1),(9,0)[/tex]We need to check all the given options.
[tex](4,2)[/tex]Substitute x=4 and y=2 in the inequality, we get
[tex]2(4)-3(2)\ge12[/tex][tex]2\ge12[/tex]This is not true.
[tex](2,5)[/tex]Substitute x=2 and y=5 in the inequality, we get
[tex]2(2)-3(5)\ge12[/tex][tex]-11\ge12[/tex]This is not true.
[tex](1,1)[/tex]Substitute x=1 and y=1 in the inequality, we get
[tex]2(1)-3(1)\ge12[/tex][tex]-1\ge12[/tex]Hence the solution is
[tex](9,2)[/tex]