Respuesta :

Given:

[tex]2x-3y\ge12[/tex]

Add 3y-12 to both sides of the inequality, we get

[tex]2x-3y+3y-12\ge12+3y-12[/tex]

[tex]2x-12\ge3y[/tex]

Dividing both sides by 3, we get

[tex]\frac{2x-12}{3}\ge\frac{3y}{3}[/tex]

[tex]\frac{2x-12}{3}\ge y[/tex]

Let x=9 and substitute in this inequality, we get

[tex]\frac{2(9)-12}{3}\ge y[/tex]

[tex]\frac{18-12}{3}\ge y[/tex]

[tex]\frac{6}{3}\ge y[/tex]

[tex]2\ge y[/tex]

We get 2 is greater than or equal to y.

y values are 2,1,0,...

Hence the solutions to the given inequality are

[tex](9,2),(9,1),(9,0)[/tex]

We need to check all the given options.

[tex](4,2)[/tex]

Substitute x=4 and y=2 in the inequality, we get

[tex]2(4)-3(2)\ge12[/tex]

[tex]2\ge12[/tex]

This is not true.

[tex](2,5)[/tex]

Substitute x=2 and y=5 in the inequality, we get

[tex]2(2)-3(5)\ge12[/tex]

[tex]-11\ge12[/tex]

This is not true.

[tex](1,1)[/tex]

Substitute x=1 and y=1 in the inequality, we get

[tex]2(1)-3(1)\ge12[/tex]

[tex]-1\ge12[/tex]

Hence the solution is

[tex](9,2)[/tex]

RELAXING NOICE
Relax