Respuesta :

The given expression is

[tex]y=5000(0.5)^x[/tex]

To find the day, we have to evaluate the function where y < 100.

[tex]\begin{gathered} 5000(0.5)^x<100 \\ (0.5)^x<\frac{100}{5000} \\ (0.5)^x<\frac{1}{50} \end{gathered}[/tex]

Then, apply a logarithm on each side

[tex]\begin{gathered} \ln (0.5)^x<\ln (\frac{1}{50}) \\ x\cdot\ln (0.5)<\ln (\frac{1}{50}) \\ x<\frac{\ln(\frac{1}{50})}{\ln(0.5)} \\ x<5.6 \end{gathered}[/tex]

Therefore, on day 5 it will be less than 100.

RELAXING NOICE
Relax