We have the following events:
[tex]\begin{gathered} A=\mleft\lbrace outcome\text{ is a divisor of 1}\mright\rbrace\text{ = }\mleft\lbrace1\mright\rbrace \\ B=\mleft\lbrace\text{outcome is a divisor of 2}\mright\rbrace\text{ = }\mleft\lbrace1,2\mright\rbrace \\ A\cap B=\mleft\lbrace1\mright\rbrace \end{gathered}[/tex]then, their probabilities are:
[tex]\begin{gathered} P(A)=P(1)=0.3 \\ P(B)=P(1)+P(2)=0.3+0.3=0.6 \\ P(A\cap B)=P(1)=0.3 \end{gathered}[/tex]then, the probability of A given that B has occurred is the following:
[tex]P(A|B)=\frac{P(A\cap B)}{P(B)}=\frac{0.3}{0.6}=0.5[/tex]therefore, P(A|B) = 0.5